Documentation of internals
Modules
PredictMD.PredictMD — Module.PredictMD.Cleaning — Module.PredictMD.Compilation — Module.PredictMD.GPU — Module.PredictMD.Server — Module.Constants
Types
PredictMD.CrossValidation — Type.PredictMD.DataFrameFeatureContrasts — Method.PredictMD.DecisionTreeModel — Type.PredictMD.GLMModel — Type.PredictMD.KnetModel — Type.PredictMD.LIBSVMModel — Type.PredictMD.SimplePipeline — Type.PredictMD.SimplePipeline — Method.Functions
PredictMD.DataFrame2LIBSVMTransformer — Method.PredictMD.accuracy — Method.PredictMD.auprc — Method.PredictMD.aurocc — Method.PredictMD.averageprecisionscore — Method.PredictMD.avg_precision — Method.PredictMD.binary_brier_score — Method.binary_brier_score(ytrue, yscore)Computes the binary formulation of the Brier score, defined as:
Lower values are better. Best value is 0.
PredictMD.calculate_smote_pct_under — Method.PredictMD.check_column_types — Method.PredictMD.cohen_kappa — Method.PredictMD.cohen_kappa — Method.PredictMD.cohen_kappa — Method.PredictMD.compute_contingency_table — Method.PredictMD.compute_contingency_table — Method.PredictMD.convert_value_to_missing! — Function.PredictMD.delete_nothings! — Method.PredictMD.f1score — Method.PredictMD.false_negative_rate — Method.PredictMD.false_positive_rate — Method.PredictMD.fbetascore — Method.PredictMD.filename_extension — Method.PredictMD.fit! — Function.PredictMD.fit! — Function.PredictMD.fit! — Function.PredictMD.fit! — Method.PredictMD.fit! — Method.PredictMD.fit! — Method.PredictMD.fit! — Method.PredictMD.fit! — Method.PredictMD.fit! — Method.PredictMD.fit! — Method.PredictMD.fit! — Method.PredictMD.fit! — Method.PredictMD.fit! — Method.PredictMD.fit! — Method.PredictMD.fit! — Method.PredictMD.fix_column_types! — Method.PredictMD.fix_type — Function.PredictMD.flatten — Method.PredictMD.generate_feature_contrasts — Method.PredictMD.generate_formula — Method.PredictMD.generate_formula — Method.PredictMD.generate_formula — Method.PredictMD.get_binary_thresholds — Method.PredictMD.get_history — Method.PredictMD.get_history — Method.PredictMD.get_underlying — Method.PredictMD.get_underlying — Method.PredictMD.get_underlying — Method.PredictMD.get_underlying — Method.PredictMD.get_underlying — Method.PredictMD.get_underlying — Method.PredictMD.get_underlying — Method.PredictMD.get_underlying — Method.PredictMD.getallrocnums — Method.PredictMD.getlabelint2stringmap — Method.PredictMD.getlabelstring2intmap — Method.PredictMD.inverse — Method.PredictMD.is_ci — Function.PredictMD.is_ci_or_runtests — Function.PredictMD.is_ci_or_runtests_or_docs_or_examples — Function.PredictMD.is_deploy_docs — Function.PredictMD.is_docs_or_examples — Function.PredictMD.is_make_docs — Function.PredictMD.is_make_examples — Function.PredictMD.is_nothing — Function.PredictMD.is_one_to_one — Method.PredictMD.is_runtests — Function.PredictMD.is_square — Method.PredictMD.is_travis_ci — Function.PredictMD.is_travis_ci_on_linux — Function.PredictMD.isflat — Function.PredictMD.ispipeline — Function.PredictMD.load_model — Method.PredictMD.mean_square_error — Method.mean_square_error(ytrue, ypred)PredictMD.negative_predictive_value — Method.PredictMD.open_plots_during_tests — Function.PredictMD.package_directory — Method.package_directory(parts...)::StringEquivalent to abspath(joinpath(abspath(package_directory()), parts...)).
PredictMD.package_directory — Method.package_directory()::StringReturn the PredictMD package directory.
PredictMD.parse_functions! — Method.PredictMD.plotlearningcurve — Function.PredictMD.plotlearningcurve — Function.PredictMD.plotlearningcurve — Method.PredictMD.plotprcurve — Method.PredictMD.plotprcurve — Method.PredictMD.plotroccurve — Method.PredictMD.plotroccurve — Method.PredictMD.positive_predictive_value — Method.PredictMD.prcurve — Method.PredictMD.prcurve — Method.PredictMD.precision — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict — Method.PredictMD.predict_proba — Method.PredictMD.predict_proba — Method.PredictMD.predict_proba — Method.PredictMD.predict_proba — Method.PredictMD.predict_proba — Method.PredictMD.predict_proba — Method.PredictMD.predict_proba — Method.PredictMD.predict_proba — Method.PredictMD.predict_proba — Method.PredictMD.predict_proba — Method.PredictMD.predict_proba — Method.PredictMD.predict_proba — Method.PredictMD.predict_proba — Method.PredictMD.predict_proba — Method.PredictMD.predict_proba — Method.PredictMD.predictionsassoctodataframe — Function.PredictMD.probability_calibration_metrics — Function.PredictMD.r2_score — Method.r2_score(ytrue, ypred)Computes coefficient of determination. Higher values are better. Best value is 1.
PredictMD.recall — Method.PredictMD.risk_score_cutoff_values — Method.PredictMD.risk_score_cutoff_values — Method.PredictMD.roccurve — Method.PredictMD.roccurve — Method.PredictMD.root_mean_square_error — Method.root_mean_square_error(ytrue, ypred)PredictMD.save_model — Method.PredictMD.sensitivity — Method.PredictMD.set_feature_contrasts! — Method.PredictMD.set_feature_contrasts! — Method.PredictMD.set_feature_contrasts! — Method.PredictMD.set_feature_contrasts! — Method.PredictMD.set_max_epochs! — Method.PredictMD.set_max_epochs! — Method.PredictMD.shuffle_rows! — Method.PredictMD.shuffle_rows! — Method.PredictMD.simple_linear_regression — Method.simple_linear_regression(x::AbstractVector, y::AbstractVector)Simple linear regression - given a set of two-dimensional points (x, y), use the ordinary least squares method to find the best fit line of the form y = a + b*x (where a and b are real numbers) and return the tuple (a, b).
PredictMD.simple_moving_average — Method.PredictMD.singlelabelbinaryyscore — Method.PredictMD.singlelabelbinaryytrue — Method.PredictMD.singlelabelregressionmetrics — Method.PredictMD.singlelabelregressionmetrics — Method.PredictMD.singlelabelregressionypred — Method.PredictMD.singlelabelregressionytrue — Method.PredictMD.smote — Method.PredictMD.smote — Method.PredictMD.specificity — Method.PredictMD.split_data — Method.PredictMD.split_data — Method.PredictMD.transform — Function.PredictMD.transform — Function.PredictMD.transform — Method.PredictMD.transform — Method.PredictMD.transform — Method.PredictMD.transform — Method.PredictMD.transform — Method.PredictMD.transform — Method.PredictMD.transform — Method.PredictMD.transform — Method.PredictMD.transform — Method.PredictMD.transform — Method.PredictMD.transform_columns! — Function.PredictMD.trapz — Function.trapz(x, y)Compute the area under the curve of 2-dimensional points (x, y) using the trapezoidal method.
PredictMD.true_negative_rate — Method.PredictMD.true_positive_rate — Method.PredictMD.tuplify — Function.PredictMD.version — Method.version()::VersionNumberReturn the version number of PredictMD.
PredictMD.version_codename — Method.version_codename()::StringReturn the version code name of PredictMD.
PredictMD.Cleaning.ccs_onehot_names — Function.Given a dataframe, return the column names corresponding to CCS "one-hot" columns.
Examples
import CSVFiles
import FileIO
import PredictMD
df = DataFrames.DataFrame(
FileIO.load(
MY_CSV_FILE_NAME;
type_detect_rows = 30_000,
)
)
@info(PredictMD.Cleaning.ccs_onehot_names(df))
@info(PredictMD.Cleaning.ccs_onehot_names(df, "ccs_onehot_"))Given a single ICD 9 code, import the relevant patients from the Health Care Utilization Project (HCUP) National Inpatient Sample (NIS) database.
Examples:
import CSVFiles
import FileIO
import PredictMD
icd_code_list = ["8841"]
icd_code_type=:procedure
input_file_name_list = [
"./data/nis_2012_core.csv",
"./data/nis_2013_core.csv",
"./data/nis_2014_core.csv",
]
output_file_name = "./output/hcup_nis_pr_8841.csv"
PredictMD.Cleaning.clean_hcup_nis_csv_icd9(
icd_code_list,
input_file_name_list,
output_file_name;
icd_code_type=icd_code_type,
rows_for_type_detect = 30_000,
)
df = DataFrames.DataFrame(
FileIO.load(
output_file_name;
type_detect_rows = 30_000,
)
)
@info(PredictMD.Cleaning.ccs_onehot_names(df))PredictMD.Cleaning.symbol_begins_with — Method.PredictMD.Cleaning.x_contains_y — Method.Macros
Index
PredictMD.CleaningPredictMD.CompilationPredictMD.GPUPredictMD.PredictMDPredictMD.ServerPredictMD.CrossValidationPredictMD.DataFrameFeatureContrastsPredictMD.DataFrameFeatureContrastsPredictMD.DecisionTreeModelPredictMD.GLMModelPredictMD.ImmutableDataFrame2GLMSingleLabelBinaryClassTransformerPredictMD.ImmutableFeatureArrayTransposerTransformerPredictMD.ImmutablePackageMultiLabelPredictionTransformerPredictMD.ImmutablePackageSingleLabelPredictProbaTransformerPredictMD.ImmutablePackageSingleLabelPredictionTransformerPredictMD.ImmutablePredictProbaSingleLabelInt2StringTransformerPredictMD.ImmutablePredictionsSingleLabelInt2StringTransformerPredictMD.KnetModelPredictMD.LIBSVMModelPredictMD.MutableDataFrame2ClassificationKnetTransformerPredictMD.MutableDataFrame2DecisionTreeTransformerPredictMD.MutableDataFrame2RegressionKnetTransformerPredictMD.SimplePipelinePredictMD.SimplePipelinePredictMD.Cleaning.ccs_onehot_namesPredictMD.Cleaning.clean_hcup_nis_csv_icd9PredictMD.Cleaning.column_names_with_prefixPredictMD.Cleaning.symbol_begins_withPredictMD.Cleaning.x_contains_yPredictMD.DataFrame2LIBSVMTransformerPredictMD.accuracyPredictMD.auprcPredictMD.auroccPredictMD.averageprecisionscorePredictMD.avg_precisionPredictMD.binary_brier_scorePredictMD.calculate_smote_pct_underPredictMD.check_column_typesPredictMD.cohen_kappaPredictMD.cohen_kappaPredictMD.cohen_kappaPredictMD.compute_contingency_tablePredictMD.compute_contingency_tablePredictMD.convert_value_to_missing!PredictMD.delete_nothings!PredictMD.f1scorePredictMD.false_negative_ratePredictMD.false_positive_ratePredictMD.fbetascorePredictMD.filename_extensionPredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fix_column_types!PredictMD.fix_typePredictMD.flattenPredictMD.generate_feature_contrastsPredictMD.generate_formulaPredictMD.generate_formulaPredictMD.generate_formulaPredictMD.get_binary_thresholdsPredictMD.get_historyPredictMD.get_historyPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.getallrocnumsPredictMD.getlabelint2stringmapPredictMD.getlabelstring2intmapPredictMD.icd9_code_to_single_level_dx_ccsPredictMD.inversePredictMD.is_ciPredictMD.is_ci_or_runtestsPredictMD.is_ci_or_runtests_or_docs_or_examplesPredictMD.is_deploy_docsPredictMD.is_docs_or_examplesPredictMD.is_make_docsPredictMD.is_make_examplesPredictMD.is_nothingPredictMD.is_one_to_onePredictMD.is_runtestsPredictMD.is_squarePredictMD.is_travis_ciPredictMD.is_travis_ci_on_linuxPredictMD.isflatPredictMD.ispipelinePredictMD.load_modelPredictMD.mean_square_errorPredictMD.multilabelprobabilitiestopredictionsPredictMD.multilabelprobabilitiestopredictionsPredictMD.negative_predictive_valuePredictMD.open_plots_during_testsPredictMD.package_directoryPredictMD.package_directoryPredictMD.parse_functions!PredictMD.plot_probability_calibration_curvePredictMD.plot_probability_calibration_curvePredictMD.plotlearningcurvePredictMD.plotlearningcurvePredictMD.plotlearningcurvePredictMD.plotprcurvePredictMD.plotprcurvePredictMD.plotroccurvePredictMD.plotroccurvePredictMD.plotsinglelabelbinaryclassifierhistogramPredictMD.plotsinglelabelregressiontrueversuspredictedPredictMD.positive_predictive_valuePredictMD.prcurvePredictMD.prcurvePredictMD.precisionPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predictionsassoctodataframePredictMD.probability_calibration_metricsPredictMD.probability_calibration_metricsPredictMD.probability_calibration_scores_and_fractionsPredictMD.probability_calibration_scores_and_fractionsPredictMD.r2_scorePredictMD.recallPredictMD.risk_score_cutoff_valuesPredictMD.risk_score_cutoff_valuesPredictMD.roccurvePredictMD.roccurvePredictMD.root_mean_square_errorPredictMD.save_modelPredictMD.sensitivityPredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_max_epochs!PredictMD.set_max_epochs!PredictMD.shuffle_rows!PredictMD.shuffle_rows!PredictMD.simple_linear_regressionPredictMD.simple_moving_averagePredictMD.single_labeldataframeknetregressionPredictMD.single_labeldataframeknetregression_KnetPredictMD.single_labeldataframelinearregressionPredictMD.single_labeldataframelinearregression_GLMPredictMD.single_labeldataframerandomforestregressionPredictMD.single_labeldataframerandomforestregression_DecisionTreePredictMD.single_labeldataframesvmregressionPredictMD.single_labeldataframesvmregression_LIBSVMPredictMD.single_labelmulticlassdataframeknetclassifierPredictMD.single_labelmulticlassdataframeknetclassifier_KnetPredictMD.single_labelmulticlassdataframerandomforestclassifierPredictMD.single_labelmulticlassdataframesvmclassifierPredictMD.single_labelmulticlassdataframesvmclassifier_LIBSVMPredictMD.single_labelmulticlassdfrandomforestclassifier_DecisionTreePredictMD.single_labelprobabilitiestopredictionsPredictMD.singlelabelbinaryclassdataframelogisticclassifierPredictMD.singlelabelbinaryclassdataframelogisticclassifier_GLMPredictMD.singlelabelbinaryclassificationmetricsPredictMD.singlelabelbinaryclassificationmetricsPredictMD.singlelabelbinaryclassificationmetrics_resultdictPredictMD.singlelabelbinaryclassificationmetrics_tunableparamPredictMD.singlelabelbinaryyscorePredictMD.singlelabelbinaryytruePredictMD.singlelabelregressionmetricsPredictMD.singlelabelregressionmetricsPredictMD.singlelabelregressionmetrics_resultdictPredictMD.singlelabelregressionypredPredictMD.singlelabelregressionytruePredictMD.smotePredictMD.smotePredictMD.specificityPredictMD.split_dataPredictMD.split_dataPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transform_columns!PredictMD.trapzPredictMD.true_negative_ratePredictMD.true_positive_ratePredictMD.tuplifyPredictMD.versionPredictMD.version_codename