Documentation of internals
Modules
#
PredictMD.PredictMD — Module.
#
PredictMD.Cleaning — Module.
#
PredictMD.Compilation — Module.
#
PredictMD.GPU — Module.
#
PredictMD.Server — Module.
Constants
#
PredictMD.Fittable — Constant.
Fittable
Types
#
PredictMD.AbstractEstimator — Type.
AbstractEstimator
#
PredictMD.AbstractFeatureContrasts — Type.
AbstractFeatureContrasts
#
PredictMD.AbstractPipeline — Type.
AbstractPipeline
#
PredictMD.AbstractPlot — Type.
AbstractPlot{T}
#
PredictMD.AbstractTransformer — Type.
AbstractTransformer
#
PredictMD.DataFrameFeatureContrasts — Type.
#
PredictMD.DataFrameFeatureContrasts — Method.
#
PredictMD.DecisionTreeModel — Type.
#
PredictMD.GLMModel — Type.
#
PredictMD.ImmutableDataFrame2GLMSingleLabelBinaryClassTransformer — Type.
#
PredictMD.ImmutableFeatureArrayTransposerTransformer — Type.
#
PredictMD.ImmutablePackageMultiLabelPredictionTransformer — Type.
#
PredictMD.ImmutablePackageSingleLabelPredictProbaTransformer — Type.
#
PredictMD.ImmutablePackageSingleLabelPredictionTransformer — Type.
#
PredictMD.ImmutablePredictProbaSingleLabelInt2StringTransformer — Type.
#
PredictMD.ImmutablePredictionsSingleLabelInt2StringTransformer — Type.
#
PredictMD.KnetModel — Type.
#
PredictMD.LIBSVMModel — Type.
#
PredictMD.MutableDataFrame2ClassificationKnetTransformer — Type.
#
PredictMD.MutableDataFrame2DecisionTreeTransformer — Type.
#
PredictMD.MutableDataFrame2RegressionKnetTransformer — Type.
#
PredictMD.SimplePipeline — Type.
#
PredictMD.SimplePipeline — Method.
Functions
#
PredictMD.DataFrame2LIBSVMTransformer — Method.
#
PredictMD._getlabelint2stringmap — Method.
#
PredictMD._getlabelstring2intmap — Method.
#
PredictMD._single_labeldataframeknetregression_Knet — Method.
#
PredictMD._single_labeldataframelinearregression_GLM — Method.
#
PredictMD._single_labeldataframerandomforestregression_DecisionTree — Method.
#
PredictMD._single_labeldataframesvmregression_LIBSVM — Method.
#
PredictMD._single_labelmulticlassdataframeknetclassifier_Knet — Method.
#
PredictMD._single_labelmulticlassdataframesvmclassifier_LIBSVM — Method.
#
PredictMD._single_labelmulticlassdfrandomforestclassifier_DecisionTree — Method.
#
PredictMD._singlelabelbinaryclassdataframelogisticclassifier_GLM — Method.
#
PredictMD._singlelabelbinaryclassdataframeprobitclassifier_GLM — Method.
#
PredictMD._singlelabelbinaryclassificationmetrics — Method.
#
PredictMD._singlelabelbinaryclassificationmetrics_tunableparam — Method.
#
PredictMD._singlelabelregressionmetrics — Method.
#
PredictMD.accuracy — Method.
#
PredictMD.auprc — Method.
#
PredictMD.aurocc — Method.
#
PredictMD.averageprecisionscore — Method.
#
PredictMD.avg_precision — Method.
#
PredictMD.binary_brier_score — Method.
binary_brier_score(ytrue, yscore)
Computes the binary formulation of the Brier score, defined as:
Lower values are better. Best value is 0.
#
PredictMD.calculate_smote_pct_under — Method.
#
PredictMD.check_column_types — Method.
#
PredictMD.cohen_kappa — Method.
#
PredictMD.cohen_kappa — Method.
#
PredictMD.cohen_kappa — Method.
#
PredictMD.compute_contingency_table — Method.
#
PredictMD.compute_contingency_table — Method.
#
PredictMD.convert_value_to_missing! — Function.
#
PredictMD.delete_nothings! — Method.
#
PredictMD.f1score — Method.
#
PredictMD.false_negative_rate — Method.
#
PredictMD.false_positive_rate — Method.
#
PredictMD.fbetascore — Method.
#
PredictMD.filename_extension — Method.
#
PredictMD.fit! — Function.
#
PredictMD.fit! — Function.
#
PredictMD.fit! — Function.
#
PredictMD.fit! — Method.
#
PredictMD.fit! — Method.
#
PredictMD.fit! — Method.
#
PredictMD.fit! — Method.
#
PredictMD.fit! — Method.
#
PredictMD.fit! — Method.
#
PredictMD.fit! — Method.
#
PredictMD.fit! — Method.
#
PredictMD.fit! — Method.
#
PredictMD.fit! — Method.
#
PredictMD.fit! — Method.
#
PredictMD.fit! — Method.
#
PredictMD.fix_column_types! — Method.
#
PredictMD.fix_type — Function.
#
PredictMD.generate_feature_contrasts — Method.
#
PredictMD.generate_formula — Method.
#
PredictMD.generate_formula — Method.
#
PredictMD.generate_formula — Method.
#
PredictMD.generate_formula — Method.
#
PredictMD.generate_interaction_terms — Method.
#
PredictMD.get_binary_thresholds — Method.
#
PredictMD.get_history — Method.
#
PredictMD.get_history — Method.
#
PredictMD.get_history — Method.
#
PredictMD.get_history — Method.
#
PredictMD.get_history — Method.
#
PredictMD.get_history — Method.
#
PredictMD.get_history — Method.
#
PredictMD.get_history — Method.
#
PredictMD.get_history — Method.
#
PredictMD.get_history — Method.
#
PredictMD.get_history — Method.
#
PredictMD.get_history — Method.
#
PredictMD.get_history — Method.
#
PredictMD.get_history — Method.
#
PredictMD.get_history — Method.
#
PredictMD.get_underlying — Method.
#
PredictMD.get_underlying — Method.
#
PredictMD.get_underlying — Method.
#
PredictMD.get_underlying — Method.
#
PredictMD.get_underlying — Method.
#
PredictMD.get_underlying — Method.
#
PredictMD.get_underlying — Method.
#
PredictMD.get_underlying — Method.
#
PredictMD.get_underlying — Method.
#
PredictMD.get_underlying — Method.
#
PredictMD.get_underlying — Method.
#
PredictMD.get_underlying — Method.
#
PredictMD.get_underlying — Method.
#
PredictMD.get_underlying — Method.
#
PredictMD.get_underlying — Method.
#
PredictMD.getallrocnums — Method.
#
PredictMD.icd9_code_to_single_level_dx_ccs — Method.
#
PredictMD.inverse — Method.
#
PredictMD.is_appveyor_ci — Function.
#
PredictMD.is_ci — Function.
#
PredictMD.is_ci_or_runtests — Function.
#
PredictMD.is_ci_or_runtests_or_docs_or_examples — Function.
#
PredictMD.is_deploy_docs — Function.
#
PredictMD.is_docs_or_examples — Function.
#
PredictMD.is_make_docs — Function.
#
PredictMD.is_make_examples — Function.
#
PredictMD.is_nothing — Function.
#
PredictMD.is_one_to_one — Method.
#
PredictMD.is_runtests — Function.
#
PredictMD.is_square — Method.
#
PredictMD.is_travis_ci — Function.
#
PredictMD.is_travis_ci_on_apple — Function.
#
PredictMD.is_travis_ci_on_linux — Function.
#
PredictMD.load_model — Method.
#
PredictMD.mean_square_error — Method.
mean_square_error(ytrue, ypred)
#
PredictMD.multilabelprobabilitiestopredictions — Method.
#
PredictMD.negative_predictive_value — Method.
#
PredictMD.open_plots_during_tests — Function.
#
PredictMD.package_directory — Method.
package_directory(parts...)::String
Equivalent to abspath(joinpath(abspath(package_directory()), parts...)).
#
PredictMD.package_directory — Method.
package_directory(f::Function, types::Tuple)::String
If function f with type signature types is part of a Julia package, returns the package root directory.
If function f with type signature types is not part of a Julia package, throws an error.
#
PredictMD.package_directory — Method.
package_directory(f::Function)::String
If function f is part of a Julia package, returns the package root directory.
If function f is not part of a Julia package, throws an error.
#
PredictMD.package_directory — Method.
package_directory(m::Method)::String
If method m is part of a Julia package, returns the package root directory.
If method m is not part of a Julia package, throws an error.
#
PredictMD.package_directory — Method.
package_directory(m::Module, parts...)::String
Equivalent to result = abspath(joinpath(abspath(package_directory(m)), parts...)).
#
PredictMD.package_directory — Method.
package_directory(m::Module)::String
If module m is part of a Julia package, returns the package root directory.
If module m is not part of a Julia package, throws an error.
#
PredictMD.package_directory — Method.
package_directory()::String
Return the PredictMD package directory.
#
PredictMD.parse_functions! — Method.
#
PredictMD.parse_functions! — Method.
#
PredictMD.parse_functions! — Method.
#
PredictMD.parse_functions! — Method.
#
PredictMD.parse_functions! — Method.
#
PredictMD.parse_functions! — Method.
#
PredictMD.parse_functions! — Method.
#
PredictMD.parse_functions! — Method.
#
PredictMD.parse_functions! — Method.
#
PredictMD.parse_functions! — Method.
#
PredictMD.parse_functions! — Method.
#
PredictMD.parse_functions! — Method.
#
PredictMD.parse_functions! — Method.
#
PredictMD.parse_functions! — Method.
#
PredictMD.plot_probability_calibration_curve — Method.
#
PredictMD.plot_probability_calibration_curve — Method.
#
PredictMD.plotlearningcurves — Function.
#
PredictMD.plotlearningcurves — Function.
#
PredictMD.plotlearningcurves — Method.
#
PredictMD.plotprcurves — Method.
#
PredictMD.plotprcurves — Method.
#
PredictMD.plotroccurves — Method.
#
PredictMD.plotroccurves — Method.
#
PredictMD.plotsinglelabelbinaryclassifierhistogram — Method.
#
PredictMD.plotsinglelabelregressiontrueversuspredicted — Method.
#
PredictMD.positive_predictive_value — Method.
#
PredictMD.prcurve — Method.
#
PredictMD.prcurve — Method.
#
PredictMD.precision — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict — Method.
#
PredictMD.predict_proba — Method.
#
PredictMD.predict_proba — Method.
#
PredictMD.predict_proba — Method.
#
PredictMD.predict_proba — Method.
#
PredictMD.predict_proba — Method.
#
PredictMD.predict_proba — Method.
#
PredictMD.predict_proba — Method.
#
PredictMD.predict_proba — Method.
#
PredictMD.predict_proba — Method.
#
PredictMD.predict_proba — Method.
#
PredictMD.predict_proba — Method.
#
PredictMD.predict_proba — Method.
#
PredictMD.predict_proba — Method.
#
PredictMD.predict_proba — Method.
#
PredictMD.predict_proba — Method.
#
PredictMD.predictionsassoctodataframe — Function.
#
PredictMD.probability_calibration_metrics — Function.
#
PredictMD.probability_calibration_metrics — Method.
#
PredictMD.probability_calibration_scores_and_fractions — Method.
#
PredictMD.probability_calibration_scores_and_fractions — Method.
#
PredictMD.r2_score — Method.
r2_score(ytrue, ypred)
Computes coefficient of determination. Higher values are better. Best value is 1.
#
PredictMD.recall — Method.
#
PredictMD.risk_score_cutoff_values — Method.
#
PredictMD.risk_score_cutoff_values — Method.
#
PredictMD.roccurve — Method.
#
PredictMD.roccurve — Method.
#
PredictMD.root_mean_square_error — Method.
root_mean_square_error(ytrue, ypred)
#
PredictMD.save_model — Method.
#
PredictMD.sensitivity — Method.
#
PredictMD.set_feature_contrasts! — Method.
#
PredictMD.set_feature_contrasts! — Method.
#
PredictMD.set_feature_contrasts! — Method.
#
PredictMD.set_feature_contrasts! — Method.
#
PredictMD.set_feature_contrasts! — Method.
#
PredictMD.set_feature_contrasts! — Method.
#
PredictMD.set_feature_contrasts! — Method.
#
PredictMD.set_feature_contrasts! — Method.
#
PredictMD.set_feature_contrasts! — Method.
#
PredictMD.set_feature_contrasts! — Method.
#
PredictMD.set_feature_contrasts! — Method.
#
PredictMD.set_feature_contrasts! — Method.
#
PredictMD.set_feature_contrasts! — Method.
#
PredictMD.set_feature_contrasts! — Method.
#
PredictMD.set_feature_contrasts! — Method.
#
PredictMD.set_max_epochs! — Method.
#
PredictMD.set_max_epochs! — Method.
#
PredictMD.set_max_epochs! — Method.
#
PredictMD.shuffle_rows! — Method.
#
PredictMD.shuffle_rows! — Method.
#
PredictMD.simple_linear_regression — Method.
simple_linear_regression(x::AbstractVector, y::AbstractVector)
Simple linear regression - given a set of two-dimensional points (x, y), use the ordinary least squares method to find the best fit line of the form y = a + b*x (where a and b are real numbers) and return the tuple (a, b).
#
PredictMD.simple_moving_average — Method.
#
PredictMD.single_labeldataframeknetregression — Method.
#
PredictMD.single_labeldataframelinearregression — Method.
#
PredictMD.single_labeldataframerandomforestregression — Method.
#
PredictMD.single_labeldataframesvmregression — Method.
#
PredictMD.single_labelmulticlassdataframeknetclassifier — Method.
#
PredictMD.single_labelmulticlassdataframerandomforestclassifier — Method.
#
PredictMD.single_labelmulticlassdataframesvmclassifier — Method.
#
PredictMD.single_labelprobabilitiestopredictions — Method.
#
PredictMD.singlelabelbinaryclassdataframelogisticclassifier — Method.
#
PredictMD.singlelabelbinaryclassdataframeprobitclassifier — Method.
#
PredictMD.singlelabelbinaryclassificationmetrics — Method.
#
PredictMD.singlelabelbinaryclassificationmetrics — Method.
#
PredictMD.singlelabelbinaryyscore — Method.
#
PredictMD.singlelabelbinaryytrue — Method.
#
PredictMD.singlelabelregressionmetrics — Method.
#
PredictMD.singlelabelregressionmetrics — Method.
#
PredictMD.singlelabelregressionypred — Method.
#
PredictMD.singlelabelregressionytrue — Method.
#
PredictMD.smote — Method.
#
PredictMD.smote — Method.
#
PredictMD.specificity — Method.
#
PredictMD.split_data — Method.
#
PredictMD.split_data — Method.
#
PredictMD.transform — Function.
#
PredictMD.transform — Function.
#
PredictMD.transform — Method.
#
PredictMD.transform — Method.
#
PredictMD.transform — Method.
#
PredictMD.transform — Method.
#
PredictMD.transform — Method.
#
PredictMD.transform — Method.
#
PredictMD.transform — Method.
#
PredictMD.transform — Method.
#
PredictMD.transform_columns! — Function.
#
PredictMD.trapz — Method.
trapz(x, y)
Compute the area under the curve of 2-dimensional points (x, y) using the trapezoidal method.
#
PredictMD.true_negative_rate — Method.
#
PredictMD.true_positive_rate — Method.
#
PredictMD.tuplify — Function.
#
PredictMD.underlying — Method.
#
PredictMD.version — Method.
version(f::Function, types::Tuple)::VersionNumber
If function f with type signature types is part of a Julia package, returns the version number of that package.
If function f with type signature types is not part of a Julia package, throws an error.
#
PredictMD.version — Method.
version(f::Function)::VersionNumber
If function f is part of a Julia package, returns the version number of that package.
If function f is not part of a Julia package, throws an error.
#
PredictMD.version — Method.
version(m::Method)::VersionNumber
If method m is part of a Julia package, returns the version number of that package.
If method m is not part of a Julia package, throws an error.
#
PredictMD.version — Method.
version(m::Module)::VersionNumber
If module m is part of a Julia package, returns the version number of that package.
If module m is not part of a Julia package, throws an error.
#
PredictMD.version — Method.
version()::VersionNumber
Return the version number of PredictMD.
#
PredictMD.Cleaning.ccs_onehot_names — Function.
Given a dataframe, return the column names corresponding to CCS "one-hot" columns.
Examples
import CSVFiles
import FileIO
import PredictMD
df = DataFrames.DataFrame(
FileIO.load(
MY_CSV_FILE_NAME;
type_detect_rows = 30_000,
)
)
@info(PredictMD.Cleaning.ccs_onehot_names(df))
@info(PredictMD.Cleaning.ccs_onehot_names(df, "ccs_onehot_"))
#
PredictMD.Cleaning.clean_hcup_nis_csv_icd9 — Method.
Given a single ICD 9 code, import the relevant patients from the Health Care Utilization Project (HCUP) National Inpatient Sample (NIS) database.
Examples:
import CSVFiles
import FileIO
import PredictMD
icd_code_list = ["8841"]
icd_code_type=:procedure
input_file_name_list = [
"./data/nis_2012_core.csv",
"./data/nis_2013_core.csv",
"./data/nis_2014_core.csv",
]
output_file_name = "./output/hcup_nis_pr_8841.csv"
PredictMD.Cleaning.clean_hcup_nis_csv_icd9(
icd_code_list,
input_file_name_list,
output_file_name;
icd_code_type=icd_code_type,
rows_for_type_detect = 30_000,
)
df = DataFrames.DataFrame(
FileIO.load(
output_file_name;
type_detect_rows = 30_000,
)
)
@info(PredictMD.Cleaning.ccs_onehot_names(df))
#
PredictMD.Cleaning.column_names_with_prefix — Method.
#
PredictMD.Cleaning.symbol_begins_with — Method.
#
PredictMD.Cleaning.x_contains_y — Method.
Macros
Index
PredictMD.CleaningPredictMD.CompilationPredictMD.GPUPredictMD.PredictMDPredictMD.ServerPredictMD.FittablePredictMD.AbstractEstimatorPredictMD.AbstractFeatureContrastsPredictMD.AbstractPipelinePredictMD.AbstractPlotPredictMD.AbstractTransformerPredictMD.DataFrameFeatureContrastsPredictMD.DataFrameFeatureContrastsPredictMD.DecisionTreeModelPredictMD.GLMModelPredictMD.ImmutableDataFrame2GLMSingleLabelBinaryClassTransformerPredictMD.ImmutableFeatureArrayTransposerTransformerPredictMD.ImmutablePackageMultiLabelPredictionTransformerPredictMD.ImmutablePackageSingleLabelPredictProbaTransformerPredictMD.ImmutablePackageSingleLabelPredictionTransformerPredictMD.ImmutablePredictProbaSingleLabelInt2StringTransformerPredictMD.ImmutablePredictionsSingleLabelInt2StringTransformerPredictMD.KnetModelPredictMD.LIBSVMModelPredictMD.MutableDataFrame2ClassificationKnetTransformerPredictMD.MutableDataFrame2DecisionTreeTransformerPredictMD.MutableDataFrame2RegressionKnetTransformerPredictMD.SimplePipelinePredictMD.SimplePipelinePredictMD.Cleaning.ccs_onehot_namesPredictMD.Cleaning.clean_hcup_nis_csv_icd9PredictMD.Cleaning.column_names_with_prefixPredictMD.Cleaning.symbol_begins_withPredictMD.Cleaning.x_contains_yPredictMD.DataFrame2LIBSVMTransformerPredictMD._getlabelint2stringmapPredictMD._getlabelstring2intmapPredictMD._single_labeldataframeknetregression_KnetPredictMD._single_labeldataframelinearregression_GLMPredictMD._single_labeldataframerandomforestregression_DecisionTreePredictMD._single_labeldataframesvmregression_LIBSVMPredictMD._single_labelmulticlassdataframeknetclassifier_KnetPredictMD._single_labelmulticlassdataframesvmclassifier_LIBSVMPredictMD._single_labelmulticlassdfrandomforestclassifier_DecisionTreePredictMD._singlelabelbinaryclassdataframelogisticclassifier_GLMPredictMD._singlelabelbinaryclassdataframeprobitclassifier_GLMPredictMD._singlelabelbinaryclassificationmetricsPredictMD._singlelabelbinaryclassificationmetrics_tunableparamPredictMD._singlelabelregressionmetricsPredictMD.accuracyPredictMD.auprcPredictMD.auroccPredictMD.averageprecisionscorePredictMD.avg_precisionPredictMD.binary_brier_scorePredictMD.calculate_smote_pct_underPredictMD.check_column_typesPredictMD.cohen_kappaPredictMD.cohen_kappaPredictMD.cohen_kappaPredictMD.compute_contingency_tablePredictMD.compute_contingency_tablePredictMD.convert_value_to_missing!PredictMD.delete_nothings!PredictMD.f1scorePredictMD.false_negative_ratePredictMD.false_positive_ratePredictMD.fbetascorePredictMD.filename_extensionPredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fix_column_types!PredictMD.fix_typePredictMD.generate_feature_contrastsPredictMD.generate_formulaPredictMD.generate_formulaPredictMD.generate_formulaPredictMD.generate_formulaPredictMD.generate_interaction_termsPredictMD.get_binary_thresholdsPredictMD.get_historyPredictMD.get_historyPredictMD.get_historyPredictMD.get_historyPredictMD.get_historyPredictMD.get_historyPredictMD.get_historyPredictMD.get_historyPredictMD.get_historyPredictMD.get_historyPredictMD.get_historyPredictMD.get_historyPredictMD.get_historyPredictMD.get_historyPredictMD.get_historyPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.getallrocnumsPredictMD.icd9_code_to_single_level_dx_ccsPredictMD.inversePredictMD.is_appveyor_ciPredictMD.is_ciPredictMD.is_ci_or_runtestsPredictMD.is_ci_or_runtests_or_docs_or_examplesPredictMD.is_deploy_docsPredictMD.is_docs_or_examplesPredictMD.is_make_docsPredictMD.is_make_examplesPredictMD.is_nothingPredictMD.is_one_to_onePredictMD.is_runtestsPredictMD.is_squarePredictMD.is_travis_ciPredictMD.is_travis_ci_on_applePredictMD.is_travis_ci_on_linuxPredictMD.load_modelPredictMD.mean_square_errorPredictMD.multilabelprobabilitiestopredictionsPredictMD.negative_predictive_valuePredictMD.open_plots_during_testsPredictMD.package_directoryPredictMD.package_directoryPredictMD.package_directoryPredictMD.package_directoryPredictMD.package_directoryPredictMD.package_directoryPredictMD.package_directoryPredictMD.parse_functions!PredictMD.parse_functions!PredictMD.parse_functions!PredictMD.parse_functions!PredictMD.parse_functions!PredictMD.parse_functions!PredictMD.parse_functions!PredictMD.parse_functions!PredictMD.parse_functions!PredictMD.parse_functions!PredictMD.parse_functions!PredictMD.parse_functions!PredictMD.parse_functions!PredictMD.parse_functions!PredictMD.plot_probability_calibration_curvePredictMD.plot_probability_calibration_curvePredictMD.plotlearningcurvesPredictMD.plotlearningcurvesPredictMD.plotlearningcurvesPredictMD.plotprcurvesPredictMD.plotprcurvesPredictMD.plotroccurvesPredictMD.plotroccurvesPredictMD.plotsinglelabelbinaryclassifierhistogramPredictMD.plotsinglelabelregressiontrueversuspredictedPredictMD.positive_predictive_valuePredictMD.prcurvePredictMD.prcurvePredictMD.precisionPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predictionsassoctodataframePredictMD.probability_calibration_metricsPredictMD.probability_calibration_metricsPredictMD.probability_calibration_scores_and_fractionsPredictMD.probability_calibration_scores_and_fractionsPredictMD.r2_scorePredictMD.recallPredictMD.risk_score_cutoff_valuesPredictMD.risk_score_cutoff_valuesPredictMD.roccurvePredictMD.roccurvePredictMD.root_mean_square_errorPredictMD.save_modelPredictMD.sensitivityPredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_max_epochs!PredictMD.set_max_epochs!PredictMD.set_max_epochs!PredictMD.shuffle_rows!PredictMD.shuffle_rows!PredictMD.simple_linear_regressionPredictMD.simple_moving_averagePredictMD.single_labeldataframeknetregressionPredictMD.single_labeldataframelinearregressionPredictMD.single_labeldataframerandomforestregressionPredictMD.single_labeldataframesvmregressionPredictMD.single_labelmulticlassdataframeknetclassifierPredictMD.single_labelmulticlassdataframerandomforestclassifierPredictMD.single_labelmulticlassdataframesvmclassifierPredictMD.single_labelprobabilitiestopredictionsPredictMD.singlelabelbinaryclassdataframelogisticclassifierPredictMD.singlelabelbinaryclassdataframeprobitclassifierPredictMD.singlelabelbinaryclassificationmetricsPredictMD.singlelabelbinaryclassificationmetricsPredictMD.singlelabelbinaryyscorePredictMD.singlelabelbinaryytruePredictMD.singlelabelregressionmetricsPredictMD.singlelabelregressionmetricsPredictMD.singlelabelregressionypredPredictMD.singlelabelregressionytruePredictMD.smotePredictMD.smotePredictMD.specificityPredictMD.split_dataPredictMD.split_dataPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transform_columns!PredictMD.trapzPredictMD.true_negative_ratePredictMD.true_positive_ratePredictMD.tuplifyPredictMD.underlyingPredictMD.versionPredictMD.versionPredictMD.versionPredictMD.versionPredictMD.version