Documentation of internals
Modules
PredictMD.PredictMD — ModulePredictMD.Cleaning — ModulePredictMD.Compilation — ModulePredictMD.GPU — ModulePredictMD.Server — ModuleConstants
Types
PredictMD.CrossValidation — TypePredictMD.DataFrameFeatureContrasts — TypePredictMD.DataFrameFeatureContrasts — MethodPredictMD.DecisionTreeModel — TypePredictMD.GLMModel — TypePredictMD.ImmutableDataFrame2GLMSingleLabelBinaryClassTransformer — TypePredictMD.ImmutableFeatureArrayTransposerTransformer — TypePredictMD.ImmutablePackageMultiLabelPredictionTransformer — TypePredictMD.ImmutablePackageSingleLabelPredictProbaTransformer — TypePredictMD.ImmutablePackageSingleLabelPredictionTransformer — TypePredictMD.ImmutablePredictProbaSingleLabelInt2StringTransformer — TypePredictMD.ImmutablePredictionsSingleLabelInt2StringTransformer — TypePredictMD.KnetModel — TypePredictMD.LIBSVMModel — TypePredictMD.MutableDataFrame2ClassificationKnetTransformer — TypePredictMD.MutableDataFrame2DecisionTreeTransformer — TypePredictMD.MutableDataFrame2RegressionKnetTransformer — TypePredictMD.SimplePipeline — TypePredictMD.SimplePipeline — MethodFunctions
PredictMD.DataFrame2LIBSVMTransformer — MethodPredictMD.accuracy — MethodPredictMD.auprc — MethodPredictMD.aurocc — MethodPredictMD.averageprecisionscore — MethodPredictMD.avg_precision — MethodPredictMD.binary_brier_score — Methodbinary_brier_score(ytrue, yscore)Computes the binary formulation of the Brier score, defined as:
Lower values are better. Best value is 0.
PredictMD.calculate_smote_pct_under — MethodPredictMD.check_column_types — MethodPredictMD.cohen_kappa — MethodPredictMD.cohen_kappa — MethodPredictMD.cohen_kappa — MethodPredictMD.compute_contingency_table — MethodPredictMD.compute_contingency_table — MethodPredictMD.convert_value_to_missing! — FunctionPredictMD.delete_nothings! — MethodPredictMD.f1score — MethodPredictMD.false_negative_rate — MethodPredictMD.false_positive_rate — MethodPredictMD.fbetascore — MethodPredictMD.filename_extension — MethodPredictMD.fit! — FunctionPredictMD.fit! — FunctionPredictMD.fit! — FunctionPredictMD.fit! — MethodPredictMD.fit! — MethodPredictMD.fit! — MethodPredictMD.fit! — MethodPredictMD.fit! — MethodPredictMD.fit! — MethodPredictMD.fit! — MethodPredictMD.fit! — MethodPredictMD.fit! — MethodPredictMD.fit! — MethodPredictMD.fit! — MethodPredictMD.fit! — MethodPredictMD.fix_column_types! — MethodPredictMD.fix_type — FunctionPredictMD.flatten — MethodPredictMD.generate_feature_contrasts — MethodPredictMD.generate_formula — MethodPredictMD.generate_formula — MethodPredictMD.generate_formula — MethodPredictMD.get_binary_thresholds — MethodPredictMD.get_history — MethodPredictMD.get_history — MethodPredictMD.get_underlying — MethodPredictMD.get_underlying — MethodPredictMD.get_underlying — MethodPredictMD.get_underlying — MethodPredictMD.get_underlying — MethodPredictMD.get_underlying — MethodPredictMD.get_underlying — MethodPredictMD.get_underlying — MethodPredictMD.getallrocnums — MethodPredictMD.getlabelint2stringmap — MethodPredictMD.getlabelstring2intmap — MethodPredictMD.icd9_code_to_single_level_dx_ccs — MethodPredictMD.inverse — MethodPredictMD.is_ci — FunctionPredictMD.is_ci_or_runtests — FunctionPredictMD.is_ci_or_runtests_or_docs_or_examples — FunctionPredictMD.is_deploy_docs — FunctionPredictMD.is_docs_or_examples — FunctionPredictMD.is_make_docs — FunctionPredictMD.is_make_examples — FunctionPredictMD.is_nothing — FunctionPredictMD.is_one_to_one — MethodPredictMD.is_runtests — FunctionPredictMD.is_square — MethodPredictMD.is_travis_ci — FunctionPredictMD.is_travis_ci_on_linux — FunctionPredictMD.isflat — FunctionPredictMD.ispipeline — FunctionPredictMD.load_model — MethodPredictMD.mean_square_error — Methodmean_square_error(ytrue, ypred)PredictMD.multilabelprobabilitiestopredictions — MethodPredictMD.multilabelprobabilitiestopredictions — MethodPredictMD.negative_predictive_value — MethodPredictMD.open_plots_during_tests — FunctionPredictMD.package_directory — Methodpackage_directory(parts...)::StringEquivalent to abspath(joinpath(abspath(package_directory()), parts...)).
PredictMD.package_directory — Methodpackage_directory()::StringReturn the PredictMD package directory.
PredictMD.parse_functions! — MethodPredictMD.plot_probability_calibration_curve — MethodPredictMD.plot_probability_calibration_curve — MethodPredictMD.plotlearningcurve — FunctionPredictMD.plotlearningcurve — FunctionPredictMD.plotlearningcurve — MethodPredictMD.plotprcurve — MethodPredictMD.plotprcurve — MethodPredictMD.plotroccurve — MethodPredictMD.plotroccurve — MethodPredictMD.plotsinglelabelbinaryclassifierhistogram — MethodPredictMD.plotsinglelabelregressiontrueversuspredicted — MethodPredictMD.positive_predictive_value — MethodPredictMD.prcurve — MethodPredictMD.prcurve — MethodPredictMD.precision — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict — MethodPredictMD.predict_proba — MethodPredictMD.predict_proba — MethodPredictMD.predict_proba — MethodPredictMD.predict_proba — MethodPredictMD.predict_proba — MethodPredictMD.predict_proba — MethodPredictMD.predict_proba — MethodPredictMD.predict_proba — MethodPredictMD.predict_proba — MethodPredictMD.predict_proba — MethodPredictMD.predict_proba — MethodPredictMD.predict_proba — MethodPredictMD.predict_proba — MethodPredictMD.predict_proba — MethodPredictMD.predict_proba — MethodPredictMD.predictionsassoctodataframe — FunctionPredictMD.probability_calibration_metrics — FunctionPredictMD.probability_calibration_metrics — MethodPredictMD.probability_calibration_scores_and_fractions — MethodPredictMD.probability_calibration_scores_and_fractions — MethodPredictMD.r2_score — Methodr2_score(ytrue, ypred)Computes coefficient of determination. Higher values are better. Best value is 1.
PredictMD.recall — MethodPredictMD.risk_score_cutoff_values — MethodPredictMD.risk_score_cutoff_values — MethodPredictMD.roccurve — MethodPredictMD.roccurve — MethodPredictMD.root_mean_square_error — Methodroot_mean_square_error(ytrue, ypred)PredictMD.save_model — MethodPredictMD.sensitivity — MethodPredictMD.set_feature_contrasts! — MethodPredictMD.set_feature_contrasts! — MethodPredictMD.set_feature_contrasts! — MethodPredictMD.set_feature_contrasts! — MethodPredictMD.set_max_epochs! — MethodPredictMD.set_max_epochs! — MethodPredictMD.shuffle_rows! — MethodPredictMD.shuffle_rows! — MethodPredictMD.simple_linear_regression — Methodsimple_linear_regression(x::AbstractVector, y::AbstractVector)Simple linear regression - given a set of two-dimensional points (x, y), use the ordinary least squares method to find the best fit line of the form y = a + b*x (where a and b are real numbers) and return the tuple (a, b).
PredictMD.simple_moving_average — MethodPredictMD.single_labeldataframeknetregression — MethodPredictMD.single_labeldataframeknetregression_Knet — MethodPredictMD.single_labeldataframelinearregression — MethodPredictMD.single_labeldataframelinearregression_GLM — MethodPredictMD.single_labeldataframerandomforestregression — MethodPredictMD.single_labeldataframerandomforestregression_DecisionTree — MethodPredictMD.single_labeldataframesvmregression — MethodPredictMD.single_labeldataframesvmregression_LIBSVM — MethodPredictMD.single_labelmulticlassdataframeknetclassifier — MethodPredictMD.single_labelmulticlassdataframeknetclassifier_Knet — MethodPredictMD.single_labelmulticlassdataframerandomforestclassifier — MethodPredictMD.single_labelmulticlassdataframesvmclassifier — MethodPredictMD.single_labelmulticlassdataframesvmclassifier_LIBSVM — MethodPredictMD.single_labelmulticlassdfrandomforestclassifier_DecisionTree — MethodPredictMD.single_labelprobabilitiestopredictions — MethodPredictMD.singlelabelbinaryclassdataframelogisticclassifier — MethodPredictMD.singlelabelbinaryclassdataframelogisticclassifier_GLM — MethodPredictMD.singlelabelbinaryclassificationmetrics — MethodPredictMD.singlelabelbinaryclassificationmetrics — MethodPredictMD.singlelabelbinaryclassificationmetrics_resultdict — MethodPredictMD.singlelabelbinaryclassificationmetrics_tunableparam — MethodPredictMD.singlelabelbinaryyscore — MethodPredictMD.singlelabelbinaryytrue — MethodPredictMD.singlelabelregressionmetrics — MethodPredictMD.singlelabelregressionmetrics — MethodPredictMD.singlelabelregressionmetrics_resultdict — MethodPredictMD.singlelabelregressionypred — MethodPredictMD.singlelabelregressionytrue — MethodPredictMD.smote — MethodPredictMD.smote — MethodPredictMD.specificity — MethodPredictMD.split_data — MethodPredictMD.split_data — MethodPredictMD.transform — FunctionPredictMD.transform — FunctionPredictMD.transform — MethodPredictMD.transform — MethodPredictMD.transform — MethodPredictMD.transform — MethodPredictMD.transform — MethodPredictMD.transform — MethodPredictMD.transform — MethodPredictMD.transform — MethodPredictMD.transform — MethodPredictMD.transform — MethodPredictMD.transform_columns! — FunctionPredictMD.trapz — Functiontrapz(x, y)Compute the area under the curve of 2-dimensional points (x, y) using the trapezoidal method.
PredictMD.true_negative_rate — MethodPredictMD.true_positive_rate — MethodPredictMD.tuplify — FunctionPredictMD.version — Methodversion()::VersionNumberReturn the version number of PredictMD.
PredictMD.Cleaning.ccs_onehot_names — FunctionGiven a dataframe, return the column names corresponding to CCS "one-hot" columns.
Examples
import CSVFiles
import FileIO
import PredictMD
df = DataFrames.DataFrame(
FileIO.load(
MY_CSV_FILE_NAME;
type_detect_rows = 30_000,
)
)
@info(PredictMD.Cleaning.ccs_onehot_names(df))
@info(PredictMD.Cleaning.ccs_onehot_names(df, "ccs_onehot_"))PredictMD.Cleaning.clean_hcup_nis_csv_icd9 — MethodGiven a single ICD 9 code, import the relevant patients from the Health Care Utilization Project (HCUP) National Inpatient Sample (NIS) database.
Examples:
import CSVFiles
import FileIO
import PredictMD
icd_code_list = ["8841"]
icd_code_type=:procedure
input_file_name_list = [
"./data/nis_2012_core.csv",
"./data/nis_2013_core.csv",
"./data/nis_2014_core.csv",
]
output_file_name = "./output/hcup_nis_pr_8841.csv"
PredictMD.Cleaning.clean_hcup_nis_csv_icd9(
icd_code_list,
input_file_name_list,
output_file_name;
icd_code_type=icd_code_type,
rows_for_type_detect = 30_000,
)
df = DataFrames.DataFrame(
FileIO.load(
output_file_name;
type_detect_rows = 30_000,
)
)
@info(PredictMD.Cleaning.ccs_onehot_names(df))PredictMD.Cleaning.column_names_with_prefix — MethodPredictMD.Cleaning.symbol_begins_with — MethodPredictMD.Cleaning.x_contains_y — MethodMacros
Index
PredictMD.CleaningPredictMD.CompilationPredictMD.GPUPredictMD.PredictMDPredictMD.ServerPredictMD.CrossValidationPredictMD.DataFrameFeatureContrastsPredictMD.DataFrameFeatureContrastsPredictMD.DecisionTreeModelPredictMD.GLMModelPredictMD.ImmutableDataFrame2GLMSingleLabelBinaryClassTransformerPredictMD.ImmutableFeatureArrayTransposerTransformerPredictMD.ImmutablePackageMultiLabelPredictionTransformerPredictMD.ImmutablePackageSingleLabelPredictProbaTransformerPredictMD.ImmutablePackageSingleLabelPredictionTransformerPredictMD.ImmutablePredictProbaSingleLabelInt2StringTransformerPredictMD.ImmutablePredictionsSingleLabelInt2StringTransformerPredictMD.KnetModelPredictMD.LIBSVMModelPredictMD.MutableDataFrame2ClassificationKnetTransformerPredictMD.MutableDataFrame2DecisionTreeTransformerPredictMD.MutableDataFrame2RegressionKnetTransformerPredictMD.SimplePipelinePredictMD.SimplePipelinePredictMD.Cleaning.ccs_onehot_namesPredictMD.Cleaning.clean_hcup_nis_csv_icd9PredictMD.Cleaning.column_names_with_prefixPredictMD.Cleaning.symbol_begins_withPredictMD.Cleaning.x_contains_yPredictMD.DataFrame2LIBSVMTransformerPredictMD.accuracyPredictMD.auprcPredictMD.auroccPredictMD.averageprecisionscorePredictMD.avg_precisionPredictMD.binary_brier_scorePredictMD.calculate_smote_pct_underPredictMD.check_column_typesPredictMD.cohen_kappaPredictMD.cohen_kappaPredictMD.cohen_kappaPredictMD.compute_contingency_tablePredictMD.compute_contingency_tablePredictMD.convert_value_to_missing!PredictMD.delete_nothings!PredictMD.f1scorePredictMD.false_negative_ratePredictMD.false_positive_ratePredictMD.fbetascorePredictMD.filename_extensionPredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fit!PredictMD.fix_column_types!PredictMD.fix_typePredictMD.flattenPredictMD.generate_feature_contrastsPredictMD.generate_formulaPredictMD.generate_formulaPredictMD.generate_formulaPredictMD.get_binary_thresholdsPredictMD.get_historyPredictMD.get_historyPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.get_underlyingPredictMD.getallrocnumsPredictMD.getlabelint2stringmapPredictMD.getlabelstring2intmapPredictMD.icd9_code_to_single_level_dx_ccsPredictMD.inversePredictMD.is_ciPredictMD.is_ci_or_runtestsPredictMD.is_ci_or_runtests_or_docs_or_examplesPredictMD.is_deploy_docsPredictMD.is_docs_or_examplesPredictMD.is_make_docsPredictMD.is_make_examplesPredictMD.is_nothingPredictMD.is_one_to_onePredictMD.is_runtestsPredictMD.is_squarePredictMD.is_travis_ciPredictMD.is_travis_ci_on_linuxPredictMD.isflatPredictMD.ispipelinePredictMD.load_modelPredictMD.mean_square_errorPredictMD.multilabelprobabilitiestopredictionsPredictMD.multilabelprobabilitiestopredictionsPredictMD.negative_predictive_valuePredictMD.open_plots_during_testsPredictMD.package_directoryPredictMD.package_directoryPredictMD.parse_functions!PredictMD.plot_probability_calibration_curvePredictMD.plot_probability_calibration_curvePredictMD.plotlearningcurvePredictMD.plotlearningcurvePredictMD.plotlearningcurvePredictMD.plotprcurvePredictMD.plotprcurvePredictMD.plotroccurvePredictMD.plotroccurvePredictMD.plotsinglelabelbinaryclassifierhistogramPredictMD.plotsinglelabelregressiontrueversuspredictedPredictMD.positive_predictive_valuePredictMD.prcurvePredictMD.prcurvePredictMD.precisionPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predictPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predict_probaPredictMD.predictionsassoctodataframePredictMD.probability_calibration_metricsPredictMD.probability_calibration_metricsPredictMD.probability_calibration_scores_and_fractionsPredictMD.probability_calibration_scores_and_fractionsPredictMD.r2_scorePredictMD.recallPredictMD.risk_score_cutoff_valuesPredictMD.risk_score_cutoff_valuesPredictMD.roccurvePredictMD.roccurvePredictMD.root_mean_square_errorPredictMD.save_modelPredictMD.sensitivityPredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_feature_contrasts!PredictMD.set_max_epochs!PredictMD.set_max_epochs!PredictMD.shuffle_rows!PredictMD.shuffle_rows!PredictMD.simple_linear_regressionPredictMD.simple_moving_averagePredictMD.single_labeldataframeknetregressionPredictMD.single_labeldataframeknetregression_KnetPredictMD.single_labeldataframelinearregressionPredictMD.single_labeldataframelinearregression_GLMPredictMD.single_labeldataframerandomforestregressionPredictMD.single_labeldataframerandomforestregression_DecisionTreePredictMD.single_labeldataframesvmregressionPredictMD.single_labeldataframesvmregression_LIBSVMPredictMD.single_labelmulticlassdataframeknetclassifierPredictMD.single_labelmulticlassdataframeknetclassifier_KnetPredictMD.single_labelmulticlassdataframerandomforestclassifierPredictMD.single_labelmulticlassdataframesvmclassifierPredictMD.single_labelmulticlassdataframesvmclassifier_LIBSVMPredictMD.single_labelmulticlassdfrandomforestclassifier_DecisionTreePredictMD.single_labelprobabilitiestopredictionsPredictMD.singlelabelbinaryclassdataframelogisticclassifierPredictMD.singlelabelbinaryclassdataframelogisticclassifier_GLMPredictMD.singlelabelbinaryclassificationmetricsPredictMD.singlelabelbinaryclassificationmetricsPredictMD.singlelabelbinaryclassificationmetrics_resultdictPredictMD.singlelabelbinaryclassificationmetrics_tunableparamPredictMD.singlelabelbinaryyscorePredictMD.singlelabelbinaryytruePredictMD.singlelabelregressionmetricsPredictMD.singlelabelregressionmetricsPredictMD.singlelabelregressionmetrics_resultdictPredictMD.singlelabelregressionypredPredictMD.singlelabelregressionytruePredictMD.smotePredictMD.smotePredictMD.specificityPredictMD.split_dataPredictMD.split_dataPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transformPredictMD.transform_columns!PredictMD.trapzPredictMD.true_negative_ratePredictMD.true_positive_ratePredictMD.tuplifyPredictMD.version