# This file was generated by PredictMD version 0.34.21
# For help, please visit https://predictmd.net
using PredictMDExtra
PredictMDExtra.import_all()
using PredictMD
PredictMD.import_all()
### Begin project-specific settings
DIRECTORY_CONTAINING_THIS_FILE = @__DIR__
PROJECT_DIRECTORY = dirname(
joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...)
)
PROJECT_OUTPUT_DIRECTORY = joinpath(
PROJECT_DIRECTORY,
"output",
)
mkpath(PROJECT_OUTPUT_DIRECTORY)
mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data"))
mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models"))
mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots"))
### End project-specific settings
### Begin SMOTE class-balancing code
Random.seed!(999)
trainingandtuning_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"trainingandtuning_features_df.csv",
)
trainingandtuning_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"trainingandtuning_labels_df.csv",
)
testing_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"testing_features_df.csv",
)
testing_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"testing_labels_df.csv",
)
training_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"training_features_df.csv",
)
training_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"training_labels_df.csv",
)
tuning_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"tuning_features_df.csv",
)
tuning_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"tuning_labels_df.csv",
)
trainingandtuning_features_df = DataFrames.DataFrame(
FileIO.load(
trainingandtuning_features_df_filename;
type_detect_rows = 100,
)
)
trainingandtuning_labels_df = DataFrames.DataFrame(
FileIO.load(
trainingandtuning_labels_df_filename;
type_detect_rows = 100,
)
)
testing_features_df = DataFrames.DataFrame(
FileIO.load(
testing_features_df_filename;
type_detect_rows = 100,
)
)
testing_labels_df = DataFrames.DataFrame(
FileIO.load(
testing_labels_df_filename;
type_detect_rows = 100,
)
)
training_features_df = DataFrames.DataFrame(
FileIO.load(
training_features_df_filename;
type_detect_rows = 100,
)
)
training_labels_df = DataFrames.DataFrame(
FileIO.load(
training_labels_df_filename;
type_detect_rows = 100,
)
)
tuning_features_df = DataFrames.DataFrame(
FileIO.load(
tuning_features_df_filename;
type_detect_rows = 100,
)
)
tuning_labels_df = DataFrames.DataFrame(
FileIO.load(
tuning_labels_df_filename;
type_detect_rows = 100,
)
)
categorical_feature_names_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"categorical_feature_names.jld2",
)
continuous_feature_names_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"continuous_feature_names.jld2",
)
categorical_feature_names = FileIO.load(
categorical_feature_names_filename,
"categorical_feature_names",
)
continuous_feature_names = FileIO.load(
continuous_feature_names_filename,
"continuous_feature_names",
)
feature_names = vcat(categorical_feature_names, continuous_feature_names)
single_label_name = :Class
negative_class = "benign"
positive_class = "malignant"
single_label_levels = [negative_class, positive_class]
categorical_label_names = Symbol[single_label_name]
continuous_label_names = Symbol[]
label_names = vcat(categorical_label_names, continuous_label_names)
DataFrames.describe(training_labels_df[single_label_name])
show(StatsBase.countmap(training_labels_df[single_label_name]))
majorityclass = "benign"
minorityclass = "malignant"
(smoted_training_features_df, smoted_training_labels_df,) = PredictMD.smote(
training_features_df,
training_labels_df,
feature_names,
single_label_name;
majorityclass = majorityclass,
minorityclass = minorityclass,
pct_over = 100,
minority_to_majority_ratio = 1.0,
k = 5,
)
PredictMD.check_column_types(
smoted_training_features_df;
categorical_feature_names = categorical_feature_names,
continuous_feature_names = continuous_feature_names,
categorical_label_names = categorical_label_names,
continuous_label_names = continuous_label_names,
)
PredictMD.check_column_types(
smoted_training_labels_df;
categorical_feature_names = categorical_feature_names,
continuous_feature_names = continuous_feature_names,
categorical_label_names = categorical_label_names,
continuous_label_names = continuous_label_names,
)
DataFrames.describe(smoted_training_labels_df[single_label_name])
show(StatsBase.countmap(smoted_training_labels_df[single_label_name]))
smoted_training_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"smoted_training_features_df.csv",
)
smoted_training_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"smoted_training_labels_df.csv",
)
FileIO.save(smoted_training_features_df_filename, smoted_training_features_df)
FileIO.save(smoted_training_labels_df_filename, smoted_training_labels_df)
### End SMOTE class-balancing code
# This file was generated by PredictMD version 0.34.21
# For help, please visit https://predictmd.net
This page was generated using Literate.jl.