# This file was generated by PredictMD version 0.34.21
# For help, please visit https://predictmd.net
using PredictMDExtra
PredictMDExtra.import_all()
using PredictMD
PredictMD.import_all()
### Begin project-specific settings
DIRECTORY_CONTAINING_THIS_FILE = @__DIR__
PROJECT_DIRECTORY = dirname(
joinpath(splitpath(DIRECTORY_CONTAINING_THIS_FILE)...)
)
PROJECT_OUTPUT_DIRECTORY = joinpath(
PROJECT_DIRECTORY,
"output",
)
mkpath(PROJECT_OUTPUT_DIRECTORY)
mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "data"))
mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "models"))
mkpath(joinpath(PROJECT_OUTPUT_DIRECTORY, "plots"))
### End project-specific settings
### Begin linear regression code
Random.seed!(999)
trainingandtuning_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"trainingandtuning_features_df.csv",
)
trainingandtuning_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"trainingandtuning_labels_df.csv",
)
testing_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"testing_features_df.csv",
)
testing_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"testing_labels_df.csv",
)
training_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"training_features_df.csv",
)
training_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"training_labels_df.csv",
)
tuning_features_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"tuning_features_df.csv",
)
tuning_labels_df_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"tuning_labels_df.csv",
)
trainingandtuning_features_df = DataFrames.DataFrame(
FileIO.load(
trainingandtuning_features_df_filename;
type_detect_rows = 100,
)
)
trainingandtuning_labels_df = DataFrames.DataFrame(
FileIO.load(
trainingandtuning_labels_df_filename;
type_detect_rows = 100,
)
)
testing_features_df = DataFrames.DataFrame(
FileIO.load(
testing_features_df_filename;
type_detect_rows = 100,
)
)
testing_labels_df = DataFrames.DataFrame(
FileIO.load(
testing_labels_df_filename;
type_detect_rows = 100,
)
)
training_features_df = DataFrames.DataFrame(
FileIO.load(
training_features_df_filename;
type_detect_rows = 100,
)
)
training_labels_df = DataFrames.DataFrame(
FileIO.load(
training_labels_df_filename;
type_detect_rows = 100,
)
)
tuning_features_df = DataFrames.DataFrame(
FileIO.load(
tuning_features_df_filename;
type_detect_rows = 100,
)
)
tuning_labels_df = DataFrames.DataFrame(
FileIO.load(
tuning_labels_df_filename;
type_detect_rows = 100,
)
)
categorical_feature_names_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"categorical_feature_names.jld2",
)
continuous_feature_names_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"data",
"continuous_feature_names.jld2",
)
categorical_feature_names = FileIO.load(
categorical_feature_names_filename,
"categorical_feature_names",
)
continuous_feature_names = FileIO.load(
continuous_feature_names_filename,
"continuous_feature_names",
)
feature_names = vcat(categorical_feature_names, continuous_feature_names)
single_label_name = :MedV
continuous_label_names = Symbol[single_label_name]
categorical_label_names = Symbol[]
label_names = vcat(categorical_label_names, continuous_label_names)
show(
PredictMD.linearly_dependent_columns(
training_features_df,
feature_names,
)
)
linear_regression = PredictMD.single_labeldataframelinearregression(
feature_names,
single_label_name;
package = :GLM,
intercept = true,
interactions = 1,
name = "Linear regression",
)
PredictMD.fit!(linear_regression,training_features_df,training_labels_df)
PredictMD.get_underlying(linear_regression) # TODO: fix this error
linear_regression_plot_training =
PredictMD.plotsinglelabelregressiontrueversuspredicted(
linear_regression,
training_features_df,
training_labels_df,
single_label_name,
);
display(linear_regression_plot_training)
PredictMD.save_plot(
joinpath(
PROJECT_OUTPUT_DIRECTORY,
"plots",
"linear_regression_plot_training.pdf",
),
linear_regression_plot_training,
)
linear_regression_plot_testing =
PredictMD.plotsinglelabelregressiontrueversuspredicted(
linear_regression,
testing_features_df,
testing_labels_df,
single_label_name
);
display(linear_regression_plot_testing)
PredictMD.save_plot(
joinpath(
PROJECT_OUTPUT_DIRECTORY,
"plots",
"linear_regression_plot_testing.pdf",
),
linear_regression_plot_testing,
)
show(
PredictMD.singlelabelregressionmetrics(
linear_regression,
training_features_df,
training_labels_df,
single_label_name,
);
allrows = true,
allcols = true,
splitcols = false,
)
show(
PredictMD.singlelabelregressionmetrics(
linear_regression,
testing_features_df,
testing_labels_df,
single_label_name,
);
allrows = true,
allcols = true,
splitcols = false,
)
linear_regression_filename = joinpath(
PROJECT_OUTPUT_DIRECTORY,
"models",
"linear_regression.jld2",
)
PredictMD.save_model(linear_regression_filename, linear_regression)
### End linear regression code
# This file was generated by PredictMD version 0.34.21
# For help, please visit https://predictmd.net
This page was generated using Literate.jl.